
Binary Translation

G. Lettieri

5 Oct. 2018

1 Introduction

The idea of binary translation is to first translate the guest code into the equiv-
alent host code for the virtual machine, and then jump at the translated code.
If the translated code is kept in a cache and reused whenever the the guest is
trying to execute it again, the cost of decoding the guest instructions is thus
amortized. Moreover, the translated code can be optimized during the trans-
lation, since our emulator now looks at more than a single guest instruction at
a time. This strategy generally brings great speedups w.r.t. the simpler emula-
tion we have already seen, where each guest instruction is fetched, decoded and
emulated in isolation, and this is done every time the guest tries to execute it.
Apart from this, our emulator is again a normal, unprivileged program running
on the host system, relying on the host operating system for the management of
its resources. What we are doing is simply to replace the CPU loop with a more
sophisticated one. In particular, the considerations about I/O, virtual memory
and multi-threading are essentially the same as before.

Typically, the translation of guest code is not performed all at once, but in
smaller units called Dynamic Basic Blocks (DBB for short). A DBB starts with
an instruction which is the target of a jump (including the jump to the entry
point of the program) and includes all the instructions that follow, stopping
immediately after the first branch or jump instruction. One reason for using
DBBs is that it is otherwise very difficult to identify all the code in the guest
memory, since code looks just like data. DBBs start at instructions that the
emulated CPU is actually trying to fetch after a jump, and therefore we rest
assured that the corresponding bytes in the emulated memory must be inter-
preted as an instruction. Moreover, as long as the fetched instruction is not a
jump (and we don’t need to execute the instruction to know this), we are sure
that it is followed by another instruction, and so on, until we found a branch or
a jump. At unconditional jumps we stop, because we don’t know whether the
bytes that follow them are for code or for data (the emulated CPU is not going
to execute them, for what we now). At branches (conditional jumps) we also
stop, because it is possible that one of the two branches may never be taken,
and we don’t know if this is actually the case. The bytes that live at a dead
branch may not be code at all. DBBs allow us to only translate code that the
guest CPU is actually going to execute.

1

liujunming

liujunming

liujunming

liujunming

liujunming

liujunming

liujunming

liujunming

translated code area

Cache Mem

CPU

Guest

ip

Figure 1: Data structures used in binary translation.

We call Translated Block (TB) the translation of a DBB. DBBs contain
target instructions in the target memory (and in its emulation in the virtual
machine), while TBs contain host instructions. A TB is identified by the guest
address of the first instruction in the corresponding DBB so that, after the
execution of a TB, we can use the current value of the guest instruction pointer
to find the next TB to execute.

The CPU loop becomes something like

for (;;) {
tb = find in cache(CPU−>ip);
if (! tb) {

tb = translate(CPU−>ip);
add to cache(tb);

}
exec(tb, env);

}

Where CPU is the usual descriptor for the emulated CPU, env is some data
structure containing all the information on the state of the guest (including the
CPU, but also memory), and tb is a pointer to a TB descriptor.

Fig. 1 shows the main data structures used in binary translation. The guest
system is represented by the usual data structures implementing the target

2

liujunming

liujunming

CPU and memory. The light gray areas in the Mem data structure represent
dynamic basic blocks. The cache binds together each (currently translated)
dynamic basic block with its translation (dark gray areas). Translations are
kept in a memory area suitable for host execution.

2 A binary translator for the Manchester Baby

We now create a complete binary-translator for the Manchester Baby machine,
following the general idea outlined above. The task is made easier by the fact
that the machine has very few instructions, a very small memory and essen-
tially no specialized I/O. Nonetheless, it is sufficiently complex to understand
the main problems and strenghts of this technique. Binary emulation can be
activated by passing the -b switch to the mbaby emulator.

2.1 Creating and executing code at runtime

To implement the translate () and exec() functions we need two solve two tech-
nical problems on the host system:

1. How to find/allocate an area of memory where we can write new executable
code;

2. how to jump to the code from C++.

For problem 1, since code is just a sequence of bytes, we might think that a
simple array of chars is sufficient. However, the host operating system will
generally try to segregate code from data, for security reasons. Therefore, a
simple array allocated with the usual means (either statically, on stack, or with
new or malloc()) will not always work: the corresponding memory area might
be protected from execution. On Unix-like systems we can use the mmap()
system call as follows:

/∗ get some executable memory ∗/
void ∗translated code area = mmap(

NULL, // preferred address: let the
// kernel choose

MAXHOSTCODE, // requested size
PROT WRITE|PROT READ|PROT EXEC, // protection bits : rwx
MAP PRIVATE|MAP ANONYMOUS, // not backed by a file ,
−1, 0 // file descriptor and offset :

// unused with MAP ANONYMOUS
);
if (translated code area == MAP FAILED) {

. . .
}

If the call succeeds, translated code area points to an area of memory that can
be used for executable code, because of the PROT EXEC flag.

3

liujunming

Assume, now, that we have stored some machine code in the memory pointed
to by translated code area. To actually execute the code, we have at least two
options:

1. Cast the pointer obtained from mmap() to a function pointer, then call
the function;

2. use an intermediate function written in assembler.

In the first case, the code stored in the translated code area must follow the
language linkage-rules.

Now let us consider an example. Assume we want to execute the machine
code corresponding to the following C++ function:

int sum(int a, int b)
{

return a + b;
}

We can obtain the corresponding machine code by compiling the above source
and using a disassembler on the executable file (e.g., “objdump --disassemble”).
In this example, the machine code is the following (stored for convenience in a
byte array):

unsigned char code[] = {
0x55, // pushq %rbp
0x48, 0x89, 0xe5, // movq %rsp,%rbp
0x89, 0x7d, 0xfc, // movq %edi,−4(%rbp)
0x89, 0x75, 0xf8, // movq %esi,−8(%rbp)
0x8b, 0x55, 0xfc, // movq −4(%rbp),%edx
0x8b, 0x45, 0xf8, // movq −8(%rbp),%eax
0x01, 0xd0, // addq %edx,%eax
0x5d, // popq %rbp
0xc3 // retq

};

As long as we don’t try to execute it, the code is just data, so we can simply
copy it in the executable area:

copy(code, code + sizeof(code),
static cast<unsigned char∗>(translated code area));

(here we are using STL’s copy() function, but there is nothing special about
it: we are just copying bytes from the code array to the memory pointed to by
translated code area).

Now we have to actually execute the machine code. As we said earlier, an
option is to cast translated code area into a function pointer. In this case, it
must be a pointer to a function that takes two integers and returns an integer.
We can program this as follows:

4

/∗ sum t is a pointer to a function that takes two
∗ integers and returns another integer
∗/
typedef int (∗sum t)(int, int);
. . .
/∗ convert the start address to a function pointer ∗/
sum t sum = reinterpret cast<sum t>(translated code area);

/∗ call the function ∗/
int r = sum(2, 3);

For the Manchester Baby the exec function will receive a pointers to the current
VM state (containing the CI and A registers, and the M array) and an additional
parameter whose purpose will be explained in Section 2.4 below.

2.2 Cache of Translated Blocks

For each TB we must remember the range of the corresponding guest instruc-
tions (the DBB) and host address where the translated code has been stored.
We therefore define a TB descriptor with the following fields:

struct tb t {
/∗ range of guest addresses of the DBB ∗/
int32 t g beg;
int32 t g end;

/∗ range of bytes that contain the TB ∗/
uint8 t∗ h beg;
uint8 t∗ h end;

. . .
};

The DBB goes from g beg (included) to g end (excluded). The TB goes from
h beg (included) to h end (excluded).

We need a cache to store the TBs. Given a guest instruction pointer, the
cache must be able to tell which is the corresponding TB, if any, as quickly
as possible. An hash table is usually employed here, but the small size of the
Manchester Baby memory (just 32 words) allows us to use a much simpler data
structure: an array with an entry for each possible instruction pointer:

struct chache t {
tb t∗ cache [32];

tb t∗ find(int32 t CI)
{

5

return cache[CI];
}

void add(tb t ∗);

. . .
};
cache t cache;

Initially, the cache is empty and all entries contain nullptr. To add a Translated
Block pointed by tb to the cache we just do

void cache t::add(tb t∗ tb) {
// invalidate the cache is there is no room
. . .

cache[tb−>g beg] = tb;
. . .

}

The host code is stored in a “code area” allocated as described in Section 2.1
above. When there is no room for a new TB, we have to remove some older TB
from the cache, to reuse its space in the code area. This is complicated by the
fact that the TBs have different sizes. We adopt a very simple solution (also
adopted by QEMU): when the code area fills up, we flush the entire cache. If
the code area is big enough, this will happen sufficiently rarely and will not hurt
performance very much.

2.3 Finding and translating the DBBs

The translate () function receives a guest instruction pointer. It must find the
DBB that begins at that instruction, then create the corresponding TB.

For the Manchester Baby emulator, we structure the generated TB as a
function that receives the current VM state and returns the VM state resulting
from the emulation of the entire DBB. The general structure is as follows:

1 tb t∗ translate () /∗ assume CI, A and M are global variables ∗/
2 {
3 tb t ∗tb = new tb t(); /∗ allocate a new TB ∗/
4
5 append prologue(tb);
6 int32 t ci = CI; /∗ local copy of CI ∗/
7 for (;;) {
8 /∗ fetch and decode the next instruction ∗/
9 int32 t pi = M[ci];

10 int32 t opcode = (pi & OPCODE MASK) >> 13;
11 int32 t addr = pi & ADDR MASK;
12 /∗ add the translation for this instruction ∗/

6

13 switch (opcode) {
14 case JMP: append jmp translation(tb, addr); goto out;
15 case JRP: append jrp translation(tb, addr); goto out;
16 case LDN: append ldn translation(tb, addr); break;
17 case STO: append sto translation(tb, addr); break;
18 case SUB: append sub translation(tb, addr); break;
19 case CMP: append cmp translation(tb); goto out;
20 case STP: append stp translation(tb); goto out;
21 }
22 /∗ add the code to increment CI ∗/
23 append incCI(tb);
24 /∗ move to the next instruction ∗/
25 ci++;
26 }
27 out:
28 append epilogue(tb);
29 return tb;
30 }

The basic idea is to build the TB piecewise, appending the necessary host code
depending on the fetched guest instruction. We start by inserting the C++
function prologue (line 5), then we fetch the guest instructions sequentially (lines
9–26), appending code along the way. We stop when we encounter a JMP, JRP,
CMP or STP (lines 14, 15, 19 and 20). Whenever we fetch a new instruction
after the first one, we must remember to append the code that increments the
guest CI (line 23).

Note that the translation of some guest instructions depend on the value of
the addr field. For example, the translation of “LDN 20” must read from M[20].
Therefore, we pass the addr field to the helper functions that need it.

The translation of each instruction is just sequence of bytes that must be
appended to the current TB. In our case, the sequence is constant apart from
a few bytes that may depend on the value of addr. Examples of the generated
TBs can be observed by running the mbaby emulator with a verbosity level of 4
(e..g, mbaby -b -vvvv < afp.snp). In this way, whenever a new TB is created,
the emulator will print the corresponding DBB range, the binary TB contents
and its disassembly.

2.4 Self modifying code

The most complex problem is how to handle guest code that modifies itself.
Assume first that code in one DBB B1 modifies code in another DBB B2. If we
have already translated B2, we need to invalidate the corresponding TB. First,
we have to detect the fact that the B2 has been altered. Since code is just data
somewhere in guest memory, any guest write to memory may modify code. We
have two main tecniques to detect code modification:

7

• (software only) remember in some data structure the range of guest ad-
dresses containing code that we have already translated and look up the
destination address before each guest memory write (e.g., we can keep a
bitmap with one bit for each page);

• (with the help of the host hardware) write-protect the guest memory that
contains already translated code, then invalidate the relavant cache entries
on page fault.

For the latter technique, remember that the binary translator is generally an
unprivileged program running on some OS, so it does not have direct access to
page tables and it cannot directly intercept page faults. However, in Unix-like
system, we can proceed as follows:

1. Allocate the guest memory using mmap() (this is necessary to be able to
use mprotect() below);

2. use the signal () system call to intercept the SIGSEGV signal;

3. whenever we translate a DBB, use mprotect() to ask the kernel to re-
move the PROT WRITE permission from the corresponding pages in
guest memory;

Now, when our process will try to write into the protected pages, the kernel
will send it a SIGSEGV signal. Normally, this signal causes the abnormal ter-
mination of the process, returning to the shell which then prints “Segmentation
fault”. However, in step 2, we have asked the kernel that we want to handle
SIGSEGV by our own. All we need to do is to call signal () with the number of
the signal we are instered in (i.e., SIGSEGV) and a pointer to a function of our
own. Whenever the process receives the selected signal, it executes our function
instead of terminating. We can use this function to invalidate the translation
cache.

Since the Manchester Baby memory is so small, our emulator can use a
bitmap with a bit for every word. This bitmap is updated every time a tb is
added to the cache, by setting all the bits from tb−>g beg to tb−>g end−1.
The bitmap is also accessible to each TB. The translation of each “STO a”
instruction must first check that the a bit is not set in the bitmap. If it is,
the instruction is trying to change some previously translated DBB and all the
corresponding TBs must be invalidated (note that there might be more than
one DBB that contained the modified instruction).

The most complex case occurs when a DBB B tries to modify itself. Now we
cannot simply invalidate the TB, since this is the very code we are executing.
Probably the best thing we can do is to switch to emulation as soon as we detect
the write, and continue to emulate one instruction at a time until we get out of
the DBB. By “switch to emulation” we mean that our binary translator must
also include an emulator (like the one we studied in the first lectures) and, when
needed, it must be able to temporarily stop translating dynamic basic blocks
and start fetching and executing one guest instruction at a time.

8

3 Optimizations

Recall from the first lecture the basic property of emulation/virtualization: we
take snapshots of the guest and target states and guarantee that each guest
snapshot is the representation of the corresponding target snapshot; on the
other end, we do not guarantee any correspondence of guest and target states
between two snapshots. In binary translation, snapshots are taken just before
the execution of each DBB. During the execution of each basic block we are
free to rearrange, omit and otherwise optimize the operations, provided that we
always obtain the correct snapshot in the end.

There are several optimizations that the binary translator can use during the
translation of a dynamic basic block. Here we mention only the most important.

3.1 Constant propagation

Constant propagation consists in replacing a register or memory operand with
an immediate operand. This can be done whenever the content of the register
or memory operand is known to the optimizer. E.g.,

movl $0, %eax
. . .
incl %eax
movl %eax, %ebx

If there are not other updates to %eax between the inizialization and the incre-
ment, then the optimizer can replace the last instruction with movl $1, %ebx.

3.2 Dead code elimination

This optimization consists in removing (host) code that cannot affect the state.
A typical example is the removal of the code that computes the condition codes
(e.g., the contents of the EFLAGS register in IA32). Assume, for example, that
the that the target machine has an IA32 architecture and that the guest code
contains something like

ADDL %EAX, %EBX
SUBL $1, %EBX

The flags computed by the first addition will be overwritten by the following
subtraction, so there is no need to compute them.

Another example is the value of the guest instruction pointer register: this is
updated after the execution of each guest instruction, but its value is only used
during a relative jump (to sum it to the jump offset) or a subroutine call (e.g.,
to store it on the stack). The translated code can avoid computing the value
of the guest instruction pointer and only update it at the end of the dynamic
basic block. In the example translation of the previous lecture, we already used
this optimization: in that case, the guest instruction pointer was updated only

9

liujunming

at the end, by loading it from the guest stack during the emulation of the RET
instruction.

3.3 Register allocation

Instead of repeatedly reading and storing the guest registers from the guest
CPU data structure in memory, we can allocate some host register to store the
content of a guest register for the entire duration of a TB. At the beginning of
the TB we load the contents of the guest register into the selected host register,
we use the host register during all of the translation, then we store the value
of the host register back into the guest register at the end of the TB. Note
that registers are generally faster than memory, even than fist level caches. A
modern CPU may need 4 cycles to access its cache, but registers are always
read and written in one cycle.

There is no need to permanently map a guest register to the same host reg-
ister. The mapping can be optimized on a per-block basis. However, imporant
registers that are used very often in most blocks may be always kept in the
same host register, thus saving the loads and stores at the beginning of each
translated block. In IA32 this may be the case for the guest ESP register, for
example.

3.4 Lazy condition code computation

Even if we can omit most condition code computations using dead code elimi-
nation, we still have to compute the final value of the flags register ad the end
the TB. This is because we do not know if the next TB will need it. However,
we can do better: instead of computing the flags, we store the operands and the
result of the last guest instruction that would have updated them. We will use
these values to compute the flags later, but only if we fetch a guest instruction
that needs them. In most cases we will never compute the flags, since we will
first fetch a guest instruction that overwrites them.

3.5 Translated block chaining

In the standard binary translation algorithm we return to the the main loop
after the execution of each TB; then, we use the current value of the guest CPU
instruction pointer to look up the translation cache, eventually translating a new
DBB in case of miss. Once we have the pointer to the new TB, we can patch the
previous block so that, the next time it will be executed, it will directly jump
to the new TB, instead of returning to the main loop. This can be done even
if a TB ends with a conditional jump: the TB will jump to one of two possible
next TBs.

10

4 Problems

Depending on the target architecture, the binary translator also have to solve a
set of complex problems, in order to correctly emulate the target states.

4.1 Handling interrupts

The target will check for interrupts after the execution of each instruction.
The binary translator can emulate this by inserting the code that checks for
interrupts after the translation of each guest instruction.

However, since there is generally no guarantee on the exact timing of inter-
rupt arrival, we can adopt a more efficient strategy and only check for interrupts
whenever the host returns to the main loop. This is acceptable if basic block
chaining is not used, since each translation block will contain no loops. If chain-
ing is used, however, the emulator may spend an unbounded amount of time
in the exec() function, without returning to the main loop. In this case, chain-
ing must be disabled whenever there is a pending interrupt This is essentially
equivalent to putting the interrupt checking code at the end of each TB, before
the jump to the next block.

Note that this optimization may have a confusing effect: since we are ar-
tificially disabling interrupts for the duration of a DBB, we may be hiding
synchronization errors in the guest code.

4.2 Handling faults

The problem with faults is that they may occur in the middle of a DBB and,
unlike interrupts, they typically cannot be delayed. We can implement this with
a lonjmp() to the main loop, where the corresponding setjmp() will then read
the guest interrupt table and change the guest instruction pointer accordingly.
The problem, however, is that the guest fault handler may need the contents of
all guest registers at the time of the fault, while the translated code has been
optimized assuming that the guest state was needed only at the end of each TB.
Since we certainly do not want to remove optimizations, we need to reconstruct
the exact state of the guest whenever a fault is generated. This is still good
performance-wise, since faults are rare.

The complexity of the guest state reconstruction depends on the optimiza-
tions that have been used during the translation of the block.

• If we have used register allocation, we can store a table with the mapping
between guest and host registers together with each TB. If a fault is gen-
erated during the execution of the TB, we can use the table to update the
contents of the guest registers before jumping to the guest fault handler.

• We have to consider possible faults when we apply dead code elimination.
Essentially, faults may insert code between two instructions, thus creating
users for otherwise dead values. If we can identify before hand all the
instructions that may cause a fault (e.g., division by zero can only be

11

generated by a division), then we can make sure that the guest state is
updated before the execution of any such instruction.

• In the most complex cases we may need to return to a known consistent
state and switch to emulation until we hit the fault again.

4.3 Virtual memory

In the example translation of the previous lecture we also omitted to consider
the guest virtual memory. In a complete translation, we need to translate every
guest address before using it to access the guest memory. This can be done
by inserting the code for the translation in all the guest instructions that have
memory operands. The code to be added is essentially the same code that we
already considered when we talked about virtual memory in emulators, and can
benefit from the same optimizations (e.g., a software TLB). If a page fault needs
to be generated, we need to apply all the considerations that we have already
discussed for the general fault case.

12

	Introduction
	A binary translator for the Manchester Baby
	Creating and executing code at runtime
	Cache of Translated Blocks
	Finding and translating the DBBs
	Self modifying code

	Optimizations
	Constant propagation
	Dead code elimination
	Register allocation
	Lazy condition code computation
	Translated block chaining

	Problems
	Handling interrupts
	Handling faults
	Virtual memory

